В Беднарський, О Дворник, Н Дон - Аналіз температурних залежностей параметра полуботка для упорядкованих фаз арсенідів цинку та кадмію - страница 1

Страницы:
1 

ВІСНИК ЛЬВІВ. УН-ТУ

Серія фізична. 2006. Вип. 39. С. 282-287

VISNYKLVIV UNIV. Ser. Physic. 2006. N39. P.282-287

УДК 548.73/.75+621.315.592 PACS number(s): 61.66.Fn

АНАЛІЗ ТЕМПЕРАТУРНИХ ЗАЛЕЖНОСТЕЙ ПАРАМЕТРА ПОЛУБОТКА ДЛЯ УПОРЯДКОВАНИХ ФАЗ АРСЕНІДІВ ЦИНКУ ТА КАДМІЮ (ZnsAsi, CcbAsi)

В. Беднарський, О. Дворник, Н. Дон, В. Мартинюк, Г. Чуйко

Херсонський державний технічний університет, Бериславське шосе, 24, 73008 Херсон, Україна e-mail: kstu@tlc.kherson.ua

У статті розраховано температурні залежності параметра Полуботка, статистично проаналізовано та інтерпретовано розрахункові висновки з експериментальних результатів.

За результатами аналізу відшукано, що параметр Полуботка в межах експериментальної точності суттєво різний для так званих а, а' -фаз як поміж цими кристалічними фазами в кожній сполуці, так і поміж сполуками. Натомість для а'' -фаз відмінності в параметрі Полуботка статистично незначні поміж різними сполуками.

Ключові слова: поліморфізм, сполуки A^B^, тетрагональна дефор­мація, дисперсійний аналіз.

Сполукам   типу   A"B\   притаманний   поліморфізм   особливого типу,

пов'язаний з побудовою їх катіонних підґраток [1, 2]. Чверть усіх вузлів у цих підґратках є вакантною, і можливо навіть, що узагальнену хімічну формулу з'єднань було б точніше зображувати як a^oBl , де O - символ стехіометричної вакансії.

Якщо вакансії розташовані по вузлах підґратки катіонів (елементів другої групи, металів) стохастично, випадково, то ймовірність того, що довільний вузол є вакантним, напевно дорівнює

Такі невпорядковані кристали мають кубічну просторову групу симетрії Pn3m     (Oh)     [1 - 3].    Кубічна    елементарна    комірка невпорядкованих

високотемпературних модифікацій містить чотири аніони (атоми азоту, фосфору, або миш'яку - пніктогени), щільно впаковані у тришаровій ГЦК підґратці; а також шість катіонів (атоми цинку або кадмію), які заповнюють 3/4 тетраедричних пусток ГЦК структури, та дві стехіометричні вакансії (O), які "посідають" решту тетраедричних пусток. Кожний катіон оточений тетраедрично чотирма аніонами, кожний аніон оточений катіонами лише в шести (з восьми) кутів куба та двома

© Беднарський В., Дворник О., Дон Н. та ін., 2006вакансіями, розташованими у двох інших кутах куба на кінцях однієї просторової діагоналі.

Упорядкування катіонних вакансій веде до двох головних наслідків: ■S   симетрія кристалів знижується до тетрагональної як наслідок перебудови катіонної підґратки, тоді як аніонна підґратка практично зберігається у щільній ГЦК укладці; S   кристалічна ґратка свідчить про відносно малу тетрагональну деформацію типу стискання/розтягування вздовж головної осі кристала. Матеріали зазначеного класу можуть мати декілька різних за симетрією (іншими словами за способом упорядкування вакансій, величиною та знаком тетрагональної деформації) поліморфних модифікацій, отже, і декілька різних поліморфних перетворень. Параметр відносної деформації (параметр Полуботка [4]) для різних модифікацій визначають за формулами [4, 5]:

Для так званої а" -фази; просторова група якої - P42/nmc. Або ж

п=-2-. о)

2а

Для так званих а, а' -фаз; просторові групи симетрії P42/nbc та I41cd, відповідно.

Скалярний параметр (2, 3) помітно впливає на зонну структуру матеріалів [4, 5], тому знання його величини та оцінка можливої температурної залежності є важливими для розуміння температурних змін в деталях електронних спектрів цих сполук. Відповідної інформації в науковій літературі, на жаль, досі немає. Втім, у працях [6, 7] наводяться результати температурних залежностей параметрів ґраток (c, а) для двох матеріалів зазначеного класу: Zn3As2, Cd3As2.

Для фосфідів Zn3P2, Cd3P2 існують лише фрагментарні дані щодо параметрів

ґраток упорядкованих а"-модифікацій [1, 2, 5]. Отже, наша стаття досліджує теоретичний аналіз та нову інтерпретацію існуючих експериментальних результатів, зокрема [1, 2, 6, 7] з метою знаходження температурних залежностей параметрів Полуботка (2, 3) в широких температурних інтервалах, які перекривають інтервали існування трьох кристалічних модифікацій.

Таблиця 1

Температурна залежність параметра Полуботка для Zn3 As2

а -фаза

а' -фаза

а" -фаза

Т, К

 

Т, К

 

Т, К

 

296

1,00365

457

1,00237

 

 

327

1,00356

467

1,00229

 

 

373

1,00352

504

1,00229

 

 

423

1,00349

589

1,00219

 

 

435

1,00350

717

1,00212

 

 

448

1,00343

757

1,00206

 

 

 

 

856

1,00210

 

 

 

 

898

1,00199

 

 

Експериментальні результати [6, 7], перераховані згідно з виразами (2, 3), наведені у таблицях 1, 2.

Таблиця 2

Температурна залежність параметра Полуботка для Cd3 As2

а -фаза

а' -фаза

а'' -фаза

Т, К

n

Т, К

n

Т, К

n

296

1,005757

503

1,004695

749

0,990704

326

1,005786

517

1,004765

762

0,990912

398

1,00563

531

1,004685

776

0,990896

493

1,005419

547

1,004712

791

0,990682

 

 

605

1,00457

 

 

 

 

703

1,004747

 

 

 

 

718

1,00481

 

 

 

 

729

1,004825

 

 

Статистична однаковість параметра Полуботка для а" -фаз. Через те, що для а" -фази Zn3As2 немає експериментальних даних, ми порівнювали поміж

собою експериментальні результати для трьох сполук типу  A" В2^:  Cd3As2

(табл. 2) Zn3P2[ П =0,99 716, 0,99 244] та Cd3P2 [ n =0,99 090, 0,99 351, 0,98 844]).

Статистичний аналіз наведених результатів свідчить - ймовірність того, що середні значення по трьох наведених вище вибірках розрізняються поміж собою: p=0,87 582 387 451. Оскільки ця ймовірність не перевищує стандартного довірчого інтервала (0,87 582 387 451<0,95), розбіжність поміж середніми величинами параметра Полуботка зазначених вище сполук не можна вважати статистично значущою на стандартному рівні 0,05 (хоча вона вже може вважатися значущою на рівні припустимо 0,15, тому що 0,85<0,87 582 387 451).

Висновок полягає в тому, що в такій модифікації величина тетрагонального стискання кристалічної ґратки є статистично однаковою для всіх сполук цього класу (ймовірно, що включно навіть з арсенідом цинку, для якого відсутні дані) і може бути записана у вигляді: n =0,9 917 зі стандартним відхиленням An =0,0 023. Принаймні при тій точності експериментальних даних, яка є нині. Отже, величина П0,0 083, тобто власне середня тетрагональна деформація ґраток (типу стискання), експериментально визначається в цих модифікаціях з точністю заледве 28%.

Дещо інші, втім лише кількісно, результати можна отримати, виключаючи з вибірки для фосфіду цинку відносно давні результати Пісторіуса ( n =0,99 716) як

статистичний ексцес. За такої умови результат дисперсійного аналізу якісно той самий, проте ймовірності інші: ймовірність того, що результати мають однакові середні значення є вищою (0,67), а ймовірність різних середніх значень - помітно нижча (0,33).

Дисперсійний аналіз для параметрів Полуботка а, а' -фаз арсенідів кадмію та цинку. Розглянемо результати дисперсійного аналізу для а' -фаз (табл. 1, 2). Розбіжність поміж середніми величинами вибірок існує на будь-якому рівні значущості (включно із стандартним рівнем 0,05), оскільки відповіднаймовірність дорівнює одиниці. Тетрагональна деформація ґратки для арсеніду кадмію ( n =1,004 726 100)   помітно   вища   від   деформації   арсеніду цинку

(n = 1,002 176 250) в цій фазі. Деформації є деформаціями розтяжіння.

Для а -фаз розбіжність поміж середніми величинами також існує на будь-якому рівні значущості, оскільки ймовірність дорівнює 0,99 999 999 708 (що майже не відрізняється від одиниці). Деформація ґратки арсеніду кадмію ( n =1,005 648 131)   знов   помітно   вища   від   деформації   арсеніду цинку

( n =1,003 525 000).

Варто було також перевірити статистичну значущість розбіжностей у параметрі Полуботка поміж різними кристалічними модифікаціями в межах кожної сполуки. Висновок дисперсійного аналізу: для кожної із сполук розбіжність між середніми значеннями параметра Полуботка у різних модифікаціях реально існує на будь-якому рівні значущості, оскільки відповідні ймовірності майже дорівнюють одиниці.

Температурні кореляції та їхня значущість. На рисунках 1- 4 показані

П

1 0024Н

1 0037

1 0036

1.0035

1.0034

300      350      400 450

Т, К

Рис. 1. Арсенід цинку. а -фаза без центру симетрії

1.0023

1.0022

1 0021

1 002

1 0019

500    600    700    800 900

Т, К

Рис. 2. Арсенід цинку. а' -фаза з центром

симетрії

1.0059 1.0058 1.0057 1.0056 1.0055 1.0054

1.0049

10048

1.0047

1.0046

10053   300      350      400      450 500

Т, К

Рис. 3. Арсенід кадмію. а -фаза без центру симетрії

1.0045

500     550     600     650     700 750

Т, К

Рис. 4. Арсенід кадмію. а -фаза з центром симетрії

В. Беднарський, О. Дворник, Н. Дон та ін.

лінійні кореляції параметра Полуботка з температурою (суцільні лінії), середні значення вибірок сполук (пунктири) та межі 5 та 95% довірчих інтервалів (точкові лінії) для двох сполук.

0.991

0 9909

0 9908+

0.9907

0 990Б

О

о

о

о

740 750    760    770    780    790 800

Т, К

Рис. 5. Арсенід кадмію. Високотемпературна а'' -фаза з центром симетрії

Коефіцієнти лінійної кореляції могли сягати досить помітних значень (як, наприклад, на рис. 1- 3), близьких за модулем до одиниці, що мало б свідчити про відносно сильну від'ємну кореляцію поміж параметром Полуботка та температурою. Втім, навіть тип такої кореляції є сумнівним, оскільки коефіцієнти кореляції на рис. 2 та рис. 4 відрізняються за знаком, не кажучи вже про те, що кореляція на рис. 4 є надзвичайно слабкою і , можливо, також нелінійною.

Окрім того, з рисунків наочно видно, що розмах кореляцій, якщо вони справді існують, не перевищує інтервалу, в якому перебуває 90% значень відповідної нормальної вибірки. Іншими словами, розмахи (амплітуди кореляцій) є порівняльними за величиною зі стандартними відхиленнями параметра Полубот­ка, зумовленими точністю експерименту, тобто випадковими причинами. Отже, визнавати їх статистично значущими на існуючому рівні точності експерименту немає підстав.

У межах експериментальної точності результатів параметр Полуботка суттєво різний для так званих а , а' -фаз як поміж цими кристалічними фазами в кожній сполуці, так і поміж сполуками. Натомість для а'' -фаз відмінності в параметрі Полуботка статистично незначні поміж різними сполуками зазначеного класу. Не знайдено також статистично значущих кореляцій поміж параметром Полуботка та температурою.

1. Изотов А.Д., Саныгин В.Н., Пономарев В.Ф. Генетическая связь полиморфных модификаций соединений // Кристаллография, 1978.Т. 23. № 4. С. 764-768.

2. Лазарев В.Б., Шевченко В.Я., Гринберг Я.Х., Соболев В.В. Полупроводниковые соединения группы AIIBV. М.: Наука, 1978. 256 с.

3. Полуботко А.М. Зависимость параметров закона дисперсии Килдал-Боднара от величины тетрагонального сжатия в халькопиритах // ФТП, 1983. Т. 19. № 4.

С. 772-774.

4. Чуйко Г.П., Дворник О.В. Зв'язок поміж кристалічним розщепленням валентних зон та тетрагональною деформацією ґратки для сполук // Фізика і хімія твердого тіла, 2002. Т. 3. № 4.

5. Arushanov E.K. Crystal Growth & Characterization of II-V Compounds // Progr. Cryst. Growth & Charact., 1980. Vol. 3. Р. 211-255.

THE ANALYSIS OF TEMPERATURE DEPENDENCES OF PARAMETER POLUBOTKO FOR THE ORDERED PHASES OF ARSENIDES OF ZINC AND

CADMIUM (Z113AS2, CU3AS2)

V. Bednarsky, O. Dvornik, N. Don, V. Martynuk, G. Chuiko

Kherson State Technical University, Berislavske shosse, 24, UA-73008 Kherson, Ukraine e-mail: kstu@tlc.kherson.ua

Work is devoted to calculations of temperature dependences of parameter Polubotko, both the full statistical analysis and interpretation of settlement conclusions from experimental results.

By results of the analysis it is found, that parameter Polubotko in frameworks experimental accuracy essentially various for so-called а-phases as between these crystal phases in each connection, and between connections. However for а-phases of difference in parameter Polubotko are statistically insignificant between different connections.

Key words: Polymorphism, connections A"BV, tetragonal deformation, dispersive

analysis.

Стаття надійшла до редколегії 19.05.2004 Прийнята до друку 21.11.2005

Страницы:
1 


Похожие статьи

В Беднарський, О Дворник, Н Дон - Аналіз температурних залежностей параметра полуботка для упорядкованих фаз арсенідів цинку та кадмію