О В Лисенко - Фізика конспект лекцій - страница 27

Страницы:
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59 

величина, що дорівнює різниці оптичних довжин n -/, які проходять хвилі, і називається оптичною різницею ходу.

З формули (48.14) випливає, що максимум буде спостерігатися тоді, коли

d = ±2pm (m = 0, 1, 2, ...)|. (48.18)

У цьому випадку cosd = 1 і набуває максимального значення. Коли ж використати (48.16) та (48.17), то отримаємо, що максимум має місце, коли оптична різниця ходу дорівнює цілому числу довжин хвиль у вакуумі:A = ±m10 (m = 0, 1, 2, ...)


(48.19)Таким чином, умови (48.18) і (48.19) є умовами інтерференційного максимуму.

Мінімальне значення інтерференційного доданка буде тоді, коли cos d = -1 , тобто

||d = ±(m +1/2)271 (m = 0, 1, 2, ...)

(48.20)

Ця умова відповідає тому, що А дорівнює напівцілому числу довжин хвиль у вакуумі:A = ±(m + 1/2)l0 (m = 0, 1, 2, ...)


(48.21)Отже, умови (48.20) та (48.21) є умовами інтерференційного мінімуму.

 

 

§ 49 Когерентність. Механізм випромінювання світла атомами. Час когерентності. Довжина когерентності. Радіус когерентності [5]

1  Як з'ясовано вище, необхідною умовою існування інтерференції є постійність у часі різниці фаз хвиль. Тобто частоти хвиль, які беруть участь у інтерференції, повинні бути однаковими, різниця початкових фаз хвиль не повинна залежати від часу.

Хвилі, для яких умова постійності у часі різниці фаз виконується називають когерентними. Когерентністю називають узгоджене проходження декількох коливальних або хвильових процесів.

У природній світловій хвилі амплітуда, частота і початкова фаза за достатньо тривалий проміжок часу неперервно хаотично змінюються. Тобто різниця фаз набуває зоднаковою ймовірністю будь-яких значень. Тому інтерференційний доданок дорівнює нулю. Таким чином, природне світло є некогерентним й інтерференції не створює.

Причини некогерентності природного світла пов 'язані з механізмом випромінювання

світла атомами. Атом випромінює світло протягом ~ 10-8 с, коли переходить із збудженого стану в звичайний. За цей час створюється цуг хвилі довжиною ~ 3 м. Через деякий час атом знову випромінює новий цуг світлової хвилі. Але початкова фаза нового цугу має випадкових характер і не пов' язана з фазою попереднього цугу. Також зрозуміло, що цуги, які утворюються різними атомами, мають різні початкові фази. Таким чином, природне світло, яке створюється як різними цугами одного і того ж атома, так і різними цугами різних атомів, є некогерентним.

3 Виберемо деяку точку і будемо спостерігати, як змінюються в ній початкові фази світлових хвиль. Зрозуміло, що фаза світлової хвилі, яка випромінюється одним атомом, залишається незмінною лише у межах одного цугу. Розглянемо світло, яке створюється багатьма атомами. Коли вибрати достатньо малий час спостереження, то може статися, що основна кількість цугів (від різних атомів) проходить через точку спостереження, не перериваючись і пам' ятаючи свої початкові фази. Тільки невелика кількість цугів змінює одна одну. За рахунок цього буде мати місце зміна результуючої початкової фази. Час, за який випадкова зміна фази досягає значення 7 , називають часом когерентності.

Розрахунок показує, що час когерентності визначається співвідношенням

 

де An - інтервал частот світлової хвилі. Для сонячного світла час когерентності дорівнює ~10-12 с.

4 Відстань /ког = ctKOZ, на яку переміщується хвиля за час когерентності, називається

довжиною когерентності. Зрозуміло, що довжина когерентності дорівнює відстані між двома точками вздовж напрямку поширення світла, у яких випадкова зміна фази досягає значення p. Для сонячного світла довжина когерентності дорівнює ~ 0,3 мм.

5 У світловій хвилі амплітуда та фаза коливань змінюються не тільки вздовж напрямку поширення, а й у площині, яка перпендикулярна до цього напрямку. Це пов' язано з тим, що різні ділянки джерела світла у поперечній площині випромінюють неузгоджено - з випадково змінною фазою. Випадкові зміни різниці фаз коливань у двох точках цієї площини збільшуються з відстанню між ними. Відстань рког між двома точками, що лежать у

площині, яка є перпендикулярною до напрямку поширення світла, у яких різниця фаз досягає значення порядку 7 , називається радіусом когерентності. Якщо джерело світла має форму диска, діаметр якого видно з даної точки спостереження під кутом ф, то, як показують розрахунки,

Рког ~ 1 / ф ,

де 1 - довжина хвилі. Для сонячного світла радіус когерентності має значення порядку 0,05 мм.

 

 

§ 50 Дослід Юнга. Ширина інтерференційних смуг [10]

1 Томас Юнг уперше в 1803 році спостерігав явище інтерференції світла, вперше визначив довжину світлової хвилі. Схема досліду зображена на рис. 50.1. Яскравий пучок світла від Сонця падав на екран з малою вузькою щілиною S . Світло від щілини S йшло до другого екрана із двома вузькими щілинами S1 і S2 , які були розміщені одна відносно іншої на відстані d. Перший екран з отвором S був призначений для збільшення радіуса когерентності. Завдяки цьому, щілини S1 і S2 можна було розмістити одна відносно іншої на відстані декількох міліметрів і світло від цих джерел залишалося когерентним. ДжерелаS1 та S2 випромінювали пучки когерентного світла, які перекривалися на екрані. На екрані в місці перекриття пучків спостерігалися паралельні інтерференційні смуги. Вимірявши ширину дифракційної смуги, Юнг зміг обчислити довжину світлової хвилі.

і

S

 

2 Обчислимо ширину інтерференційної смуги в досліді Юнга. Розглянемо дві циліндричні когерентні світлові хвилі, що виходять із джерел S1 і S2 , які мають вигляд паралельних тонких світних ниток або вузьких щілин (рис. 50.1). Область, у якій ці хвилі перекриваються, називається полем інтерференції. Якщо в поле інтерференції внести екран E , то на ньому буде спостерігатись інтерференційна картина, що має вигляд світлих і темних смуг, які чергуються між собою. Обчислимо координати цих смуг у припущенні, що екран є паралельним до площини, у якій лежать джерела S1 і S2 . Візьмемо на екрані координатну вісь X, паралельну до прямої, що проходить через S1 і S2 . Початок координат помістимо в точці O, відносно якої S1 і S2 розміщені симетрично. Джерела S1 та S2 випромінюють хвилі в однаковій фазі. Знайдемо різницю ходу світла A у точці спостереження P від цих джерел. Зрозуміло, що різниця ходу дорівнює

(50.1)

A = n' 2 - n' 1показник

заломлення середовища між джерелами та екраном E. Знайдемо '2 -'1, виходячи з геометричних міркувань. Застосовуючи теорему Піфагора, можемо записати

/? = /2 + (x - d /2)2, /22 = /2 + (x + d /2)2. (50.2)

Звідси

/22 - А2 = (/2 + /1 )(/2 - /1 )= 2 xd . (50.3) Для отримання помітної інтерференційної картини відстань між джерелами повинна бути значно меншою за відстань / до екрана. Відстань x, у межах якої утворюються інтерференційні смуги, також повинна бути значно меншою за /. За таких умов можна припустити, що /2 + /1 » 2/ . Тоді з (50.3) можемо записати /2 - /2 = xd//. Помноживши /2 - /2 на показник заломлення середовища n , отримаємо оптичну різницю ходуA=n


xd


(50.4)Підстановка цього значення A в умову інтерференційного максимуму

A = ±m10 (m = 0, 1, 2, ...)

показує, що максимуми інтенсивності будуть спостерігатися при значеннях дорівнюють


 

 

x


 

 

щоТут 1


 

 

: 10 / И


Xmax

±да — 1 (m d

0,1,2,...). (50.5) довжина хвилі у середовищі, що заповнює простір між джерелами світла йекраном.

Відстань між двома сусідніми максимумами інтенсивності називають відстанню між інтерференційними смугами, а відстань між сусідніми мінімумами інтенсивності -шириною інтерференційної смуги. Неважко з'ясувати, що відстань між смугами й ширина смуги мають однакове значення, що дорівнює, як це випливає з (50,5),Ах:


m 1- (m -1) 1 = — 1
d                      d d


(50.6)Припустимо, що відстань між щілинами S1 та S2 становить d = 1 мм, а відстань І = 1,5 м. Вимірюючи експериментально Ах = 0,93 мм, можна знайти з (50.6), що довжина світла дорівнює 1 = 620 нм. Таким шляхом уперше Юнг виміряв довжини світлових хвиль.

 

 

§ 51 Дзеркала Френеля. Ширина інтерференційних смуг [5]

1 Розглянемо інтерференційну схему, яка використовує відбиття для розділення світлової хвилі на дві частини. Ця схема отримала назву дзеркал Френеля.

Два плоских дотичні дзеркала OM та ON розміщуються так, що їх поверхні, які відбивають, утворюють кут, близький до p (рис. 1). Відповідно кут ф (див. рис. 51.1) дуже малий. Паралельно лінії перетинання дзеркал O на відстані r від неї розміщене прямолінійне джерело світла S (наприклад, вузька щілина, яка світиться). Дзеркала відбивають на екран E дві циліндричні когерентні хвилі, які поширюються так, ніби вони вийшли з уявних джерел S1 і S2. Непрозорий екран E1 знаходиться на шляху світла від джерела S до екрана E.


E

Промінь OQ являє собою відбиття променя SO від дзеркала OM, промінь OP -відбиття променя SO від дзеркала ON. Кут між ZS1SS2 дорівнює ф (як кути між відповідними взаємно перпендикулярними прямими). Оскільки S та S1 розміщені відносно дзеркала OM  симетрично, довжина відрізка OS1 дорівнює OS, тобто r. Аналогічні міркування приводять до того ж результату для відрізка OS2 . Таким чином, відстані відточки О до точок S1, S2 і S дорівнюють г . Це означає, що ці точки лежать на колі радіусом г із центром у точці О. Таким чином, кут ZS1SS2 є вписаним у коло радіусом г із центром

у точці О і тому ZS1SS2 = 2ZS1OS2. Таким чином, ZS1OS2 = . Неважко знайти відстань

>1

d  між уявними джерелами S1  та S2, використовуючи те, що OS1 = OS2 = г   и кут

ZS1OS2 = ,d = 2г sin ф » 2гф .

На рис. 1 бачимо, що a = г cos ф » г . Отже, відстань l між уявними когерентними джерелами та екраном E буде дорівнювати

l = a + b » г + b, де b - відстань від лінії перетину дзеркал O до екрана E.

Страницы:
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59 


Похожие статьи

О В Лисенко - Фізика конспект лекцій

О В Лисенко - Прогнозування технологічної спадковості при токарній овроещ