И К Младецкий, В С Томурка, В В Кныш - Синтез дробильного технологического блока - страница 1

Страницы:
1 

УДК 622.77

 

Младецкий И.К., д-р техн. наук, НГУ

Томурка В. С. аспирант, Кныш В.В., ЗАО «Анатемс»

Павленко А. А., НМетАУ

 

Синтез дробильного технологического блока.

 

В работе представлен алгоритм аналитического исследования технологического дробильного блока на основании необходимой информационной базы, главными компонентами которой математические модели грохочения и дробления.

 

В роботі представлено алгоритм аналітичного дослідження технологічного блоку подрібнення на підставі необхідної інформаціонної бази, головними компонентами якої є математичні моделі грохотіння та подрібнення.

 

 

 

В зависимости от требуемого гранулометрического состава на выходе дробильной установки должны быть подобраны параметры дробилок и грохотов. Обычно такая задача решается с помощью постановки эксперимента с дальнейшей обработкой результатов наблюдений, в соответствии с которыми вычисляются необходимые режимные параметры дробильного комплекса.

В ЗАО «Анатемс» совместно с кафедрой обогащения полезных ископаемых Национального горного университета ведутся научные разработки, направленные на теоретическое решение упомянутой задачи. В настоящее время уже создана математическая модель вычисления технологической характеристики дробления, а сепарационные характеристики грохотов уже успешно применяются для прогнозирования ситовых характеристик продуктов разделения. Таким образом, имеются все необходимые исходные данные, чтобы можно было выполнить прогноз ситовой характеристики любого дробильного блока или подобрать структуру блока и его режимные параметры в зависимости от требуемой выходной гранулометрической характеристики. Такой подход дает возможность сократить время и средства на экспериментальный поиск и выполнить его с помощью компьютерных технологий.

Рассмотрим методику синтеза структуры дробильного технологического блока.

Исходными данными являются:

-   гранулометрическая характеристика исходного продукта, идущего из , например, карьера ЕВХ(<С);

-   производительность предполагаемого комплекса Q;

-   ориентировочно подобранные дробилки и грохота в зависимости от заданной производительности.

Процесс разрушения является достаточно сложным и поэтому для его количественного анализа предлагались различные гипотезы [1], оформленные в виде уравнений, которые связывали интегральные характеристики входного ивыходного потоков материала. Попытки улучшить сходимость результатов только моделирования и экспериментальных данных сводились к потоку дополнительных коэффициентов в формулах моделей [2].

Некоторые исследования измельчительного процесса [3] показали, что количество энергии, необходимое для разрушения материала зависит от его размера так, чем меньше кусок материала, тем больше необходимо подвести энергии. Причем, зависимость эта существенно нелинейная. На этом основании был сделан вывод, что аналитическое описание разрушительного процесса должно осуществляться на микроуровне, т.е. отслеживать процесс разрушения отдельного куска известного размера.

Визуальные наблюдения за разрушением отдельных кусков [3] дали основание выдвинуть гипотезу предполагаемой закономерности распределения образуемых осколков по крупности.

В точке приложения разрушающей нагрузки образуются осколки весьма малого размера. По мере удаления от этой точки происходит увеличение размеров осколков. Эта закономерность близка к геометрической прогрессии

[44], т.е. можно выделить некоторые уровни i распространения волн разрушения и сопоставить с этими уровнями размер получаемых осколков d;:

di = di_ipl ,

где p>1 множитель, учитывающий упругие свойства частицы и способ приложения разрушающей силы (множитель разрушения).

Таким образом, если известна функция распределения частиц по крупности на входе измельчения fex(d), то с помощью соотношения (1) можно определить функцию распределения частиц по крупности на выходе febxc(d).

Для решения такой задачи анализа необходимо определить множитель p.

Первым и очевидным способом может быть экспериментальный, алгоритм которого заключается в подборе параметра p до тех пор, пока не будет удовлетворительного совпадения экспериментальной функции f*eblx(d) с расчетной feux(d).Численное моделирование технологической характеристики дробления в соответствии с методикой, изложенной в работе [4], дало возможность оценить пределы изменения множителя разрушения: 1.01<p<1.6. А подбор его значения для каждого класса крупности привел к зависимости измененияp(d0) (рис.1)

В результате количество множителей p(di) столько, на столько классов крупности разбит диапазон изменения крупности кусков, т.е. их количество не фиксировано. Кроме того, каждый узкий класс крупности, получаемый на выходе дробления, складывается из осколков, получаемых из множества кусков большей крупности. Поэтому аналитически определить множители p(di) не представляется возможным. Единственным подходящим способом является

численный. Для этого задавшись сразу вектором значений                                    и вычислив

функцию feblx(d) производим сравнение с экспериментально полученной f*ebix(d).

После этого вычисляется критерий        - Пирсона, и если                                             , то

корректируют значения множителей и снова вычисляют febix(d).

Такой расчет повторят до тех пор, пока не станет справедливым условие

2   / 2
X     (X   T .

Корректировку значений множителей целесообразно проводить методом случайного поиска, т.к. вид функции feblx(d) заранее известен.


Учет изменения прочностных свойств сырья от размера кусков дал удовлетворительное соответствие экспериментальное и теоретическое выходных функций распределения feblx(d) (табл.1,2). Дополнительная проверка этого соответствия по критерию Пирсона

Рис.1 График зависимости изменения множителя разрушения от размера разрушаемого куска для условий НКГОКа

 

 

 

Ат     , Аэ ~ ' подтвердила выдвинутое предположение.

сырья (новый пласт руды) необходимо провести только одно опробование.

Также, как видно из рис. 1 (а и б), функцию изменения множителя разрушения р от размера разрушаемых кусков можно интерполировать линейной зависимостью вида y = ax + b, которая имеет вид: y^0.002x+1.364.

Дальнейшее развитие вопроса расчета технологической характеристики дробления , предполагает нахождение зависимости (закона) коэффициента разрушения р от физических свойств сырья (а именно, статического коэффициента предела прочности), что позволит определять его аналитическии, соответственно практически полностью автоматизировать расчет технологической характеристики процесса сокращения крупности. В этом случае необходимо будет определять только статический предел прочности для заданного материала (руды).


Таким образом, теоретический расчет технологической характеристики дробления должен учитывать зависимость прочностных свойств кусков полезного ископаемого от их размера.

Итак, мы располагаем математическим оператором измельчения

A(d) = АРвых (d) (d)

И математическим оператором грохочения

P(d) = YAFb/X (d) AFbx (d)

Все преобразования по технологической схеме представляют собой определение средневзвешенных значений смешиваемых потоков. Формирование технологического бока производится в соответствии с алгоритмом, представленным на рис. 2 . Обозначения величин на этом рисунке следующие: - FBX(d) - функция распределения частиц по крупности на входе технологического аппарата; ТПРІ((С) - функция распределения частиц по крупности подрешетного продукта; Fjj^d) - функция распределения частиц по крупности надрешетного продукта; FBXi(d) - распределения частиц по крупности на входе i-го технологического аппарата; FBIbXi(d) - функцияраспределения частиц по крупности на выходе і-го технологического аппарата;

Представленный алгоритм не является автоматическим и рассчитан на специалиста, который выбирает изменение параметров грохочения и дробления в соответствии со своим знанием упомянутых процессов. Использование такого алгоритма при исследовании дробильных технологических блоков показало его состоятельность и работоспособность.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 2. Блок-схема алгоритма синтеза дробильного технологического блока.

Список литературы

1.   Андреев С.Е., Перов В.А., Зверевич В. В. Дробление, измельчением и грохочение полезных ископаемых. М. Недра, 1966-395с.

2.   Справочник по обогащению руд. В 3-х томах. Т.1. Подготовительные процессы. М. Недра, 1978, с.448.

3.   Иванов А. Н. Научное обоснование и создание высокоэффективных процессов измельчения в помольном агрегате с трубной мельницей на принципе селективности. Дис. На соискание уч. степ. д-ра техн. наук,Харьков, 2006, 326с.

4.   Младецкий И.К., Томурка В. С., Литвиненко С.Н. . Исчисление функции

распределения осколков по крупности при разрезании отдельного куска полезного ископаемого. Научно-технический сборник "Обогащение полезных ископаемых" №21 2005г.

 

Поступила в редакцию 07.05.2007

Страницы:
1 


Похожие статьи

И К Младецкий, В С Томурка, В В Кныш - Синтез дробильного технологического блока