О В Курілов - Гідробіологія - страница 8

Страницы:
1  2  3  4  5  6  7  8  9  10  11  12 

походження, що випадають на земну поверхню, знову повертаються в

океан з поверхневим стоком. У такий спосіб здійснюється колообіг не тільки сульфатів, але й інших розчинених у морській воді солей.

Істотний вплив на винос морських солей на сушу справляє розбризкування морської води в прибережних хвилеприбійних зонах. Так, з одного кілометра берегової лінії океану на сушу переноситься до 2000 т солей у рік, а розраховуючи на 250 тис. км берегової лінії всіх континентів, цей показник становить близько 5-10 т.

6.1.2 Сольовий склад континентальних вод

На відміну від морських вод, що характеризуються сталістю сольового складу, прісні води різних ландшафтних зон істотно відрізняються по вмісту основних іонів. Природні води підрозділяються по сольовому складу на три класи: гідрокарбонатні (С), сульфатні (Б) і хлоридні (СІ). Кожен клас, залежно від переважних макрокомпонентів, розділяється на три групи: кальцієва, магнієва та натрієва, а кожна група, усвою чергу, по кількісному співвідношенню іонів, - на чотири типи (I, II, III, IV).

Води типу I утворюються в процесі хімічного вимивання вулканічних порід або при обмінних процесах Са2+ та М^2+ на №+. Ці води найчастіше мало мінералізовані.

Води типу II - змішані. Їхній склад може бути пов'язаний генетично як з осадовими породами, так і із продуктами вивітрювання вулканічних порід. До цього типу належать води більшості рік, озер і підземні води невеликої й помірної мінералізації.

Тип III включає сильно мінералізовані води й води, що характеризуються катіонним обміном №+ на Са2+ або М^2+. Такі властивості притаманні водам океанів, морів, лиманів, реліктових водойм.

До вод типу IV, що не містять НСО3-, відносяться кислі води. Це води боліт, шахтні, вулканічні або води, сильно забруднені промисловими стоками.

Характеристики вод позначаються в такий спосіб: клас - хімічним символом відповідного аніона (С, Б, С1), група - символом катіона (Са, №, М^). Приналежність до типу позначається римською цифрою в нижньому індексі, до групи - символом у верхньому індексі. Наприклад, ССап -гідрокарбонатний клас, група кальцію, тип II; СІМ^П - хлоридний клас, група магнію, тип III і т.д.

Поверхневі води суши за сольовим складом характеризуються такими показниками, як загальна мінералізація, співвідношення іонів і вміст хлоридів і сульфатів. На більшій частині Європейського континенту води рік мають невелику або середню мінералізацію і належать переважно до гідрокарбонатного класу, кальцієвої групи. Для степових і напівпустельних зон характерна підвищена мінералізація вод сульфатного класу. У Європі такі ріки займають лише 3-4% площі всіх річкових басейнів. Ще менше річкових басейнів, води яких відносяться до хлоридного класу, натрієвої групи. Як правило, ці води характеризуються високою мінералізацією. На території України річкові води належать переважно до карбонатного класу. Основними іонами сольового складу

2+

води Дніпра і його водоймищ є гідрокарбонати і Са , тобто вода характеризується гідрокарбонатним класом, групою кальцію, другим типом.

Мінералізація та вміст окремих іонів у воді водойм залежать від сезону року. У пік весняної повені мінералізація води в ріках знижується внаслідок надходження снігових вод. Після закінчення повені вміст солей підвищується. Зростання солоності води стає відчутним особливо в літню межень і взимку, коли в живленні ріки збільшується частка ґрунтових вод.

Формування сольового складу зарегульованих рік залежить не тільки від складу води, що надходить із водозбірної площі, але й від характеру внутриводоймних   процесів.   При   багаторічному   регулюванні стокумінералізація води може підвищуватися лише до певного рівня, тобто до встановлення сольової рівноваги. Сезонні коливання мінералізації та іонного складу води великих водосховищ обумовлюються, головним чином, припливом річкових вод, а при каскадному їхньому розташуванні -надходженням води з вищерозташованих водосховищ і незарегульованих ділянок ріки. У невеликих водосховищах у формуванні іонного складу води важливу роль грає також змив розчинених солей із прибережних схилів, надходження ґрунтових вод і атмосферних опадів, випаровування, забір води для господарсько-побутових потреб.

В озерах сольовий склад води і її мінералізація залежать від їхнього зонального розташування. Солонуватоводні озера найчастіше розташовані в степових районах півдня України і Криму, тобто в зонах із сухим, спекотним кліматом і високою інтенсивністю випаровування води. У зв'язку із цим у непроточних або слабопроточних озерах в результаті випаровування відбувається концентрування основних іонів і часткове їхнє випадання в осад - у солонуватоводних озерах уже при солоності 2-10і вище. В осад переходять переважно слаборозчинні карбонатні солі кальцію у формі СаСО3, СаМ§(С03)2 й СаБО4 • 2Н20 (гіпс). Іноді утворення таких озер пов'язане з виходом на поверхню ґрунтових вод з підвищеною мінералізацією.

В воді солоних озер концентрація солей близька до океанічної або перевищує її. При цьому якщо нижня межа їхньої солоності лімітується верхньою межею солоності солонуватих (30) вод, то верхня не обмежена нічим. Солоні озера часто розглядаються як лікувальні з висококонцентрованими розсолами, основними компонентами яких є №+, К+, Са2+, М§2+, СІ-, Б042-, НСО3-, і С032- . Для таких озер характерні висококонцентровані розчини декількох солей, і тому їхній клас може бути визначений не по одному, а по двох аніонах, наприклад хлоридно-сульфатний або сульфатно-хлоридний. У такому випадку в назві класу на першому місці ставиться аніон, що переважає. Виділяють наступні класи вод солоних озер: карбонатні (содові), сульфатні й хлоридні. В карбонатних переважає №2С03, у сульфатних - Ка2Б04 й М§Б04, а в хлоридних - №С1, М§С12 і СаС12. В Україні є солоні озера, склад вод яких визначає їхнє лікувальне використання. Це озера Криму (Сасик, Сакське), Куяльницький лиман в Одеській області, група Слов'янських озер (Ріпне, Вейсове, Слєпноє) у басейні Сіверського Дінця й деякі інші.

6.2 Водно-сольовий обмін, значення розчинених солей

Водно-сольовий обмін у водних організмів протікає інакше, чим у наземних, тому що гідробіонти, перебуваючи у воді, випробовують на собі дію осмотичного тиску. Поверхня водних організмів у тім або іншому ступені проникна для різних речовин, тому при гіпо- або гіпертоніїсередовища для гідробіонтів створюється погроза порушення гомеостазу (зміна концентрації й співвідношення окремих іонів, обводнювання й зневоднювання тканин та ін.). Сталість хімічного складу тіла є однією з найважливіших умов гомеостазу, і тому в гідробіонтів виробився ряд адаптацій, що дозволяють їм зберігати стабільність водно-сольового обміну. У першу чергу мова йде про забезпечення сталості осмотичного тиску, тобто можливості попередження надлишкового обводнювання або зневоднювання організму, зміни його хімічного складу. При цьому клітини повинні не тільки вміти втримувати велику кількість іонів від зрівноважування із зовнішнім середовищем, але й мати здатність «розпізнавати» різні іони й регулювати їхньої концентрації відповідно до фізіологічних потреб.

У найпростішому випадку гідробіонти ізоосмотичні з навколишнім середовищем, хоча мають інше співвідношення іонів, ніж в останній. Енергія при цьому затрачається тільки на підтримку градієнтів концентрації окремих іонів. Такий тип організації водно-сольового обміну характерний для багатьох морських організмів, в основному мікроорганізмів і безхребетних. При іншому типі регуляції гідробіонти підтримують не тільки специфічне співвідношення окремих іонів, але й певний осмотичний тиск, відмінний від наявного в середовищі. Такий тип, що потребує більшого енергетичного забезпечення, однак створює стабільність не тільки співвідношення, але й абсолютних концентрацій іонів, властивий прісноводним і високоорганізованим морським організмам. Є істотна різниця в організації водно-сольового обміну в одноклітинних і багатоклітинних організмів. Перші здійснюють регуляторні функції тільки на одній поверхні розподілу - між зовнішнім середовищем і клітиною. У багатоклітинних крім цього механізму регуляції діє й інший - між клітинами і внутрішніми рідинами, зокрема кров'ю.

У прісноводних і морських організмів адаптації до водно-сольового обміну відбувались по-різному. Концентрація іонів у тканинах всіх тварин і рослин набагато вище, ніж у прісній воді, тому в мешканців останньої виникли механізми, що дозволяють підтримувати гомойосмотичність у різко гіпотонічному середовищі. Для морських організмів виявилися можливими два шляхи. Перший з них, більш давній, - ізотонія,, при якій вплив фізико-хімічних процесів зводиться до мінімуму. Разом з тим висока сталість концентрації та співвідношення різних іонів у морській воді створюють для гідробіонтів умови, що імітують гомойосмотичність. Інший шлях - забезпечення сталості вмісту в організмі води й окремих іонів за рахунок вироблення відповідних регуляторних механізмів. Такий шлях більш прогресивний, тому що дозволяє не тільки підтримувати стабільність тонічності та співвідношення іонів, але також задавати цим станам оптимальний рівень, чого не дозволяє перший спосіб. Наявністьвідповідної адаптації, що лежать в основі евригалінності, дозволяє багатьом гідробіонтам існувати в біотопах з нестійким сольовим режимом. Захист від осмотичного обводнювання і зневоднювання досягається вибором середовища з тієї або іншою тонічністю, осморегуляцією та осмоізоляцією. Сталість сольового складу досягається іонною регуляцією, що забезпечує збалансованість процесів надходження й виведення різних іонів з навколишнього середовища. Ряд адаптацій спрямований на забезпечення виживання гідробіонтів при пересиханні водойм, тимчасовому осушенні біотопів (відливи й ін.), виході з води й висиханні.

6.3 Захист від обсихання й виживання у висохлому стані

Захист від обсихання на повітрі у гідробіонтів, з одного боку, досягається тим, що вони уникають умов, що загрожують обсиханням, а з іншого боку - тим, що знижують вологовіддачу у випадку перебування поза водою. Якщо обсихання стає звичайним у житті гідробіонтів і до того ж триває довго, як це часто спостерігається в мешканців тимчасових водойм, то в деяких організмів виробляються пристосування до переживання несприятливих умов в анабіотичному стані, що супроводжується майже повною втратою води.

6.3.1 Запобігання обсиханню

Попередження обсихання в багатьох гідробіонтів досягається, насамперед, завчасним відходом від місць, що піддаються осушенню. У прісних водах, під час зниження рівня води, личинки бабок, поденок і комарів, а також деякі молюски та інші тварини залишають прибережжя, коли глибина води падає тут до декількох сантиметрів. Якщо рівень знижується занадто швидко, і багато гідробіонтів не встигають піти завчасно, тоді вони намагаються випливати за відступаючою водою, і часто їхні зусилля виявляються успішними, особливо в похмуру погоду. Наприклад, більшість молюсків уніонід встигають іти слідом за відступаючою водою, якщо швидкість оголення дна не перевищуєте 2,5 см/год. У морях під час відливу багато літоральних тварин переміщуються в сублітораль.

Якщо тварини не йдуть із водою і залишаються на вологому березі, що обсихає, то, як правило, рятуються від згубного висихання. Морські літоральні тварини після відливу ховаються під камені, де залишаються невеликі скупчення води, а затіненість місця знижує випаровування. В інших випадках тварини зариваються в пісок, або, закриваючи стулки раковин (молюски, вусоногі раки), зберігають запас води до наступного припливу. Особливо широко поширене закопування в ґрунт у прісноводних тварин, що залишаються поза водою. Глибина закопуванняможе варіювати від декількох сантиметрів до 30-40 см і більше, як це спостерігається в деяких олігохет і личинок комарів. Риби, наприклад в'юни, африканський лускатник і деякі інші, можуть закопуватися на глибину більше 1 м. Закопування в ґрунт відомо у водних клопів, личинок бабок, личинок комарів, у п'явок, олігохет, у черевоногих молюсків, у двостулкових молюсків і навіть у деяких планктонних рачків, наприклад в Вїасусіоря і Мв^асусіоря. Про ефективність закопування в ґрунт як способу захисту від висихання свідчить збереження життєздатності молюсками протягом року й більше після осушення водойми. В області розливу Дунаю після спаду його вод поверхня ґрунту висихає настільки, що по ній вільно їздять, а в глибині перебувають в'юни, що перечікують посуху. На о. Шрі-Ланка можна ловити рибу в сухих западинах через кілька днів після випадання дощів, тому що водойма, яка утворилася, наповнюється рибою, що виходить із товщі ґрунту.

Стійкість до висихання найбільшою мірою виражена у форм, які регулярно піддаються дії цього фактора.

6.3.2 Зменшення вологовіддачі

В умовах обсихання, що вимагають скорочення втрат води до мінімуму, вологовіддача може знижуватися, насамперед шляхом утворення щільних зовнішніх покривів, якими володіють багато молюсків, членистоногі, голкошкірі, хробаки та інші тварини. Найпростіші під час висихання утворять щільні цисти і зберігаються в них живими багато місяців і років. У водних комах, що живуть в умовах періодичного обсихання, посилено розвивається кутикула. Серед молюсків високою стійкістю до обсихання відрізняються передньозяберні черевоногі, що мають кришечку. Завдяки цьому втрата води тваринами знижується до мінімуму і молюски стійко переносять навіть тривале обсихання. Серед легеневих деякі види виробили здатність до виділення слизової плівки, що не тільки закриває устя раковини, але одночасно приклеює його до субстрату.

У початкову фазу висихання деякі молюски здатні до ритмічного стиску газу в легенях до 1,5-2 атм. Підвищення тиску, що забезпечується скороченням стінок легені і втягуванням тіла в раковину, збільшує ступінь використання кисню, завдяки чому трохи знижується вологовіддача. Встановлено, що підвищення концентрації солі в тілі котушки Р. ріапогЬія веде до зниження посухостійкості і, разом з тим, у періоди, що передують висиханню водойм, спостерігалося зниження концентрації солей у гемолімфі цієї тварини. Темп втрати води в умовах обсихання звичайно поступово знижується. Літоральні молюски ІЯвтНа у перші дні перебування на повітрі втрачають щодоби до 4-10% ваги м'яких тканин, потім втрати знижуються до 1,9 і 0,6%.

6.3.3 Виживання у висохлому стані

У ряду гідробіонтів виробилися адаптації до переходу в анабіотичний стан, коли збереження в тілі потрібної кількості води стає неможливим. Перебувати у висохлому стані протягом декількох тижнів, місяців і навіть років здатні найпростіші, коловертки, тихохідки, нематоди, личинки комах. Так, тіло коловерток може, висихаючи, зменшуватись до 1/3 - 1/4 свого нормального обсягу, і в такому стані тварини залишаються живими протягом багатьох місяців і років. Чим довше тварини перебувають у висушеному стані, тим більший строк перебування у вологому середовищі потрібний для їхнього переходу в активний стан. Деякі нематоди, будучи зовсім висушеними, переходять до активного життя тільки тією частиною тіла, що змочується, у той час як суха частина, що залишається, продовжує перебувати у стані анабіозу.

Серед личинок комах дивною здатністю до висихання відрізняються личинки комара Ваяуквіва ^вівіапа,, що живуть у калюжах Угорщини. Після висихання калюж вони зариваються в детрит, який під променями сонця перетворюється в пил, і в ньому перебувають висохлі зморщені личинки, виживаючи в такому стані до півроку. Здатність виживати під час відсутності води особливо характерна для мешканців пересихаючих прісних водойм. Це не тільки адаптація до виживання в умовах обсихання, але й вкрай важливе пристосування до широкого розселення форм, що живуть у маленьких ізольованих водоймах. Цисти або інші стійкі стадії гідробіонтів (спочиваючі яйця ракоподібних і коловерток, статобласти моховинок, гемули губок та ін.), що витримують існування у висохлому стані місяці й роки, можуть переноситися на величезні відстані вітром разом із пилом висохлого ґрунту, на ногах водоплавних птахів, або іншим чином, і у такий спосіб проникати в інші водойми.

6.4 Захист від осмотичного зневоднювання і обводнювання

Існування осмотичних градієнтів між тканинами гідробіонтів і навколишньою водою створює небезпеку або зневоднювання тіла організмів, або його надлишкового обводнення. Чим різкіше осмотичні градієнти, тим ця небезпека більше. Здатність уникати гідратації в прісній воді й дегідратації в морській лежить в основі евригалінності гідробіонтів.

Серед морських організмів тільки деякі - кишковопорожнинні й голкошкірі - мають тонічність навколишньої води. Злегка гіпертонічні пріапуліди, кільчасті хробаки, молюски, плечоногі, більшість ракоподібних; гипотонічні мізиди, креветки й більшість крабів, а також всі хребетні. Всі прісноводні тварини різко гипертонічні.

Пристосування гідробіонтів до захисту від осмотичного зневоднювання або обводнення насамперед зводяться до запобіганнясередовища із різко відмінними умовами солоності, як це спостерігається у стеногалінних форм. В евригалінних гідробіонтів регулювання водного обміну може досягатися частковим або повним усуненням осмотичного тиску за рахунок утворення непроникних покривів (осмоізоляція), зведенням до мінімуму різниці в тонічності тканин і навколишньої води або протиставленням осмотичному тиску механічного. Якщо ці шляхи не реалізовані або недостатньо ефективні, евригалінні організми можуть існувати, протиставляючи осмотичному тиску води інший, що йде в протилежному напрямку й компенсує по своїй величині перший. Завдяки цьому приплив або відтік води під дією фізико-хімічних сил знімається фізіологічною роботою, спрямованою на збереження водного балансу. Якщо захист від осмотичного зневоднювання неможливий, багато організмів, втрачаючи вологу, впадають в анабіоз.

Перекачування організмом води в напрямку, протилежному осмотичному току, викликає додаткові енергетичні витрати і є невигідним. Однак і інші захисні засоби не бездоганні. Ущільнення покривів, що послабляє осмотичний тиск, знижує дифузію через них кисню й СО2, тобто погіршує умови дихання. Зведення до нуля осмотичних градієнтів за рахунок ототожнення концентрації солей у своєму тілі з тією, яка має місце в навколишній воді, невигідно, оскільки солоність води варіює, і, отже, гомеостаз організмів порушується. Тому вироблення тих або інших засобів регулювання водного обміну в різних гідробіонтів пішли в різних напрямках, що забезпечують найбільшу ефективність пристосувань до конкретних умов перебування і біологічних особливостей організмів.

6.4.1 Вибір осмотично сприятливого середовища

Вибір середовища з потрібною тонічністю особливо чітко проявляється у тих організмів, які живуть у воді із солоністю, що варіює, не маючи досить потужних механізмів регуляції водного обміну. Вибір осмотично сприятливого середовища знаходить своє відбиття, насамперед у приуроченості тих або інших гідробіонтів до місцеперебувань із певною солоністю. Прісноводні форми уникають солонуватих і морських вод, солонуватоводні не селяться в прісних і морських водоймах, морські - у солонуватих і прісних. Із цієї причини, наприклад, радіолярії, головоногі, сифонофори і морські їжаки не проникають із Середземного моря (Б = 35%о) у Чорне (Б = 17%о).

В умовах мінливої солоності багато організмів переміщуються таким чином, щоб увесь час залишатися в осмотично постійному середовищі. Радіолярії ЛсапїИагіа, що живуть у поверхневому шарі морів, після випадання дощів пересуваються на глибину до 100 м і більше, подібні занурення в глибину спостерігаються в рачків Саіапш, Оіїкопа і багатьох інших тварин. Багато літоральних форм ідуть у сублітораль, якщо водарозпріснюється поступово. Деякі поліхети і молюски уникають загибелі, глибоко закопуючись у ґрунт, інші щільно стуляють стулки раковин, зберігаючи досить високу солоність у мантійній порожнині. Здатність до активного вибору сольового середовища властива річковим ракам, крабам Раску^тарят стаяяірвя, дафніям, морським зіркам і ряду інших гідробіонтів.

6.4.2 Осмоізоляція

Сталість сольового складу організмів в умовах мінливої солоності води може бути забезпечена за рахунок утворення осмотично непроникних покривів. Такий спосіб захисту від осмотичного обводнювання й зневоднювання властивий всім водним ссавцям і птахам, покриви яких волого- і соленепроникні. У водних організмів, що дихають киснем, розчиненим у воді, розвитку волого- і соленепроникненості покривів перешкоджає необхідність здійснення через них газообміну. Чим щільніше зовнішні покриви, тим повільніше дифундують крізь них кисень і вуглекислий газ, тобто погіршуються умови дихання. У зв'язку із цим у багатьох тварин щільність покривів на тілі стає досить різною. На ділянках, що використовуються для газообміну (зябра й т.п.), покриви залишаються тонкими й ніжними, на іншій поверхні тіла вони товщають, якоюсь мірою або повністю стаючи вологонепроникними.

У ракоподібних, особливо вищих, осмотичній ізоляції сприяє розвиток панцира. Сильно послабляється віддача води в гіпертонічному середовищі в личинок комах з добре розвиненою епі- і екзокутикулою, наприклад у різних бабок, поденок, клопів, жуків. Істотний засіб забезпечення осмотичної ізоляції - слиз. Наприклад, яйця багатьох хробаків, не здатні до осморегуляції, добре виживають у гіпо- і гіпертонічному середовищі тільки тому, що укладені в слизову кладку. Осмотичному захисту допомагає утворення слизу на поверхні тіла, що спостерігається у риб і багатьох інших організмів. У двостулкових молюсків осмоізоляція в несприятливому сольовому середовищі забезпечується змиканням раковини. Так, мідії, устриці та інші морські молюски, потрапляючи в опріснену воду, можуть довго виживати в ній із закритими стулками, а їхня гемолімфа кілька днів залишається нерозбавленою. Подібно молюскам, можуть тимчасово за рахунок осмоізоляції виносити різкі зміни солоності морські жолуді та інші тварини з раковинами, що закриваються. Здатність багатьох крабів й інших вищих раків існувати в умовах різких змін солоності середовища значною мірою обумовлена водонепроникністю їхнього панцира, що покриває більшу частину поверхні тіла тварин. Часткова осмоізоляція полегшує роботу осморегуляторних механізмів.

У рослин, що живуть у гіпотонічному середовищі, осмотичнеобводнювання попереджається міцністю клітинних оболонок. їхній механічний тиск урівноважує осмотичний і перешкоджає надходженню надлишкових кількостей води. Одні й ті самі рослини, що живуть в умовах неоднакової солоності, мають різну тонічність, але ступінь їхньої гіпертонії відносно середовища залишається подібною. Так, у Північному і Балтійському морях, солоність води яких відповідно дорівнює 30-35 і 15-20%о, концентрація солей у досліджених рослин розрізнялася приблизно на 14%о. Який би не була солоність середовища, рослини створюють у своїх тканинах трохи більший осмотичний тиск, що забезпечує їм тургор, який досягши певного ступіню, попереджає подальше надходження води в клітини.

6.4.3 Осморегуляція

Гомойосмотичні організми здійснюють або гіперосмотичну регуляцію, коли підтримується концентрація солей у тілі на більш високому рівні, ніж у середовищі, або гіпоосмотичну, коли середовище гіпертонічне відносно організмів. Перший випадок спостерігається у прісноводних організмів і у морських, що живуть в опрісненій воді. Гіпоосмотична регуляція властива деяким морським формам і тим прісноводним організмам, які виявляються в осолоненій воді. При знаходженні прісноводних організмів у гіпотонічному середовищі (прісна вода) вода безупинно проникає в їхнє тіло, від якої вони повинні звільнятися, щоб уникнути механічних ушкоджень і розведення соків свого тіла. Внаслідок того, що строго напівпроникних мембран (тобто проникний тільки розчинник) у тварин, очевидно, немає, останні не можуть виділяти чисту воду. Тому прісноводні тварини-осморегулятори повинні володіти адаптаціями до утримання солей і до відновлення їхніх запасів у своєму тілі.

Утримання солей в організмів досягається низькою проникністю їхніх зовнішніх покривів і реабсорбцією солей у сечовіддільних органах. Деяка втрата солей замінюється їхнім активним вилученням з навколишньої води: у ракоподібних і риб - через зябра, у жаб - через шкіру. Особливим і дуже важливим способом збільшення осмотичного тиску є підвищення концентрації в гемолімфі амінокислот, дуже характерне для личинок комах. У них, на відміну від інших тварин, амінокислоти забезпечують 60-70% осмотичного тиску і лише 30-40% його створюється за рахунок присутності хлоридів. Підвищення в крові концентрації вільних амінокислот відзначено при акліматизації до морської води прісноводних крабів. Мінімальна мінералізація води, коли різні прісноводні тварини ще можуть здійснювати гіперосмотичну регуляцію, характеризується наступними величинами (у мМ): річкові раки - 0,0005, беззубки й живородки - 0,005, перловиці й дрейсени - 0,1,китайський краб - 0,2, ставковики - 0,4. Чим вище різниця осмотичного тиску в середовищі і тілі прісноводних тварин, тим енергійніше доводиться виводити їм воду, що поступає усередину. Інтенсивність виділення води в прісноводних найпростіших дуже висока. У великій кількості віддаляється вода з гіпотонічною сечею в прісноводних риб, хробаків, молюсків, ракоподібних і інших тварин.

Якщо у всіх прісноводних організмів має місце гіперосмотична регуляція, то у морських організмів поряд з нею спостерігається і гіпоосмотична. У пойкілоосмотичних форм концентрація солей регулюється так, що вона завжди ледве вище, ніж у навколишньому середовищі. Настання ізотонії виключає приплив води ззовні, а, отже, унеможливлює сечовиділення й виведення продуктів метаболізму. Створюючи слабкий ступінь гіпертонії, морські пойкілоосмотичні організми нормально функціонують без активного споживання води. Збільшення концентрації соків тіла з підвищенням солоності води властиво як тваринам, так і рослинам. Морські гомойосмотичні організми з гіперосмотичною регуляцією в певному діапазоні підвищення солоності майже не міняють осмотичного тиску своїх соків, поки залишаються помітно гіпертонічними в порівнянні з навколишнім середовищем. Коли анізотонія стає занадто малою, щоб забезпечити надходження води в організм і створити умови для нормального сечовиділення, тварини починають підвищувати осмотичний тиск соків.

У тих випадках, коли гомойосмотичні організми гіпотонічні, їм доводиться уникати зневоднювання тканин шляхом заковтування солоної води з наступним виділенням гипертонічної сечі. П'ють морську воду багато ракоподібних, личинки комах, костисті риби та інші осморегулятори з гіпотонічним соком тіла. При різких змінах солоності середовища безхребетні звичайно міняють свій об'єм через приплив або відтік води, після чого наступає регуляція об'єму, якщо осморегуляторні механізми справляються зі своєю роботою. На осморегуляторну роботу витрачається не більше 1-2% всієї енергії, що витрачає організм (наприклад, у річкового рака 0,3%, у беззубки - 0,3%).

6.5 Сольовий обмін і виживання в умовах різної солоності

Сольовий склад організмів виявляє риси подібності з тим, який характерний для того середовища, де виникли й формувалися окремі види. Тому в ділянках біосфери з різним хімічним складом вміст окремих елементів у живих організмах помітно варіює. Створене А.П. Виноградовим навчання про біогеохімічні провінції стосується і гідросфери, хоча вода значно рухливіше, ніж ґрунт, і сольові градієнти в ній виражені слабкіше. Навіть у межах одного Чорного моря виділено ряд районів, планктон яких характеризується різним хімічним складом. Маючипевний сольовий склад, організми повинні підтримувати його сталість, причому гідробіонтам це часом важче здійснювати, чим наземним тваринам і рослинам. Покриви водних організмів проникні для іонів, тому збереження сталості їхнього співвідношення, як і сумарної концентрації в тілі, оточеному водою з різним сольовим складом, вимагає безперервної й інтенсивної роботи, що нейтралізує дію фізико-хімічних сил вирівнювання, які безупинно порушують хімічний гомеостаз гідробіонтів. Пасивному сольовому обміну, що порушує гомеостаз, організми протиставляють активне, стабілізуюче співвідношення окремих іонів та їхню сумарну концентрацію. Досконалістю механізмів регуляції сольового складу, а також витривалістю тканин до його зміни визначається виживання гідробіонтів у водах з різним сольовим складом.

6.5.1 Пасивний сольовий обмін

Фізико-хімічні процеси вирівнювання концентрацій іонів, що перебувають по обох сторонах покриву організмів, тим інтенсивніше, чим сильніше відрізняється іонний склад організму від того, який є в навколишнім середовищі, і тим слабкіше, чим менш проникні для іонів покриви тіла. Вміст різних іонів в організмах різко відмінний, ніж у воді, причому це спостерігається не тільки в гомойосмотичних, але й у пойкілоосмотичних гідробіонтів. Як правило, морські організми, в порівнянні з навколишньою водою, в 2-3 рази багаче калієм, але бідніше натрієм, магнієм і сульфатами. Різні пропорції й у вмісті окремих іонів у різних організмів, що живуть в одному і тому ж сольовому середовищі. Збереження певного сольового складу соків у гідробіонтів можливо насамперед завдяки малій проникності покривів відносно різних речовин, що залежить від величини й ступеня поляризації розчинених частинок. Чим менше частинки, тим вони легше проходять крізь оболонки, а частинки з нульовою полярністю проникають легко, незалежно від їхньої величини. Сутужніше проникають поляризовані молекули. їхня полярність, як відомо, визначається тим, що електричні заряди розподілені між атомами нерівномірно: в одній частині молекули можуть переважати позитивні заряди, а іншої - негативні. Ступінь полярності молекул визначається дипольним моментом - добутком величини різнойменних зарядів на відстань між ними. Особливо великий дипольний момент в електролітів, і тому вони найбільш важко проникають через клітинні оболонки. Меншу полярність і, отже, більшу проникність мають карбоксильні, гідроксильні й амінні групи. Неполярні вуглеводородні групи (СН4, СН2). Молекули води, як полярні, легко проникають крізь клітинні оболонки, мабуть, внаслідок свого невеликого розміру. Розходженням швидкості проникнення крізь покриви іонів електролітів і молекул води обумовлюється зміна маси тварин після осолонення абоопріснення води. У випадку різкого осолонення середовища осмотична рівновага досягається не стільки надходженням іонів в організм, скільки міграцією води назовні, і маса тварин зменшується. Різке опріснення середовища супроводжується вирівнюванням осмотичного градієнта в першу чергу за рахунок проникнення води усередину тіла, і маса організмів збільшується. Поступове вирівнювання тисків усе більшою мірою обумовлюється міграцією іонів, і маса тварин у сильно опрісненій або осолоненій воді повертається до норми.

Страницы:
1  2  3  4  5  6  7  8  9  10  11  12 


Похожие статьи

О В Курілов - Гідробіологія конспект лекцій

О В Курілов - Гідробіологія